
Higher-order Hamiltonian formalism in field theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 2545

(http://iopscience.iop.org/0305-4470/13/8/004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 2545-2551. Printed in Great Britain 

Higher-order Hamiltonian formalism in field theory 
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Abstract. A Hamiltonian formalism is developed from a regular Lagrangian 2' depending 
on an arbitrary number of derivatives. The formalism leads to a set of Hamilton equations 
whose solutions are the same as those of the Euler-Lagrange equations derived from 9'. 
The Noether currents associated with a symmetry transformation of the Hamiltonian action 
are also derived. 

1. Introduction 

It is a well known fact that the generalisation of the ordinary Hamilton variational 
principle to Lagrangians depending on derivatives of arbitrary order r offers no special 
difficulty: the Euler-Lagrange equations are obtained in the usual way once the action 
of the vector fields is defined on the higher-order derivatives which constitute the 
arguments of the Lagrangian function. When-as we shall do in the present paper-the 
fibre bundle approach is used, this is accomplished by means of the r-jet prolongation x' of the vector field X ,  which acts on the coordinates of the bundle J'(E)-the bundle 
of the r-jets-on which the Lagrangian function is defined (Aldaya and de Azctirraga 
1978). 

The situation is rather confusing, however, when one tries to obtain a canonical 
Hamiltonian formalism from a Lagrangian depending on derivatives up to order r, 
which, through the corresponding modified Hamilton principle, should lead to first- 
order Hamilton equations equivalent to the Euler-Lagrange ones which in turn would 
be obtained by applying the ordinary variational principle to that Lagrangian. The 
initial difficulty is the definition of the Hamiltonian itself. The problem of finding a 
Hamiltonian formalism for higher-order derivatives has already been considered in 
analytical mechanics (Borneas 1959, 1969; Koestler and Smith 1965; Kruger and 
Callebant 1968; Rodrigues and Rodrigues 1970; Muiicki 1978b) and field theory 
(Borneas 1969; Coelho de Souza and Rodrigues 1969; Rodrigues 1977; these papers 
contain further references), but not always with the same result. This situation has led 
us to consider the problem of looking for a canonical Hamiltonian formalism for 
higher-order derivatives. As aJesult, it will be shown that such a formalism may be 
constructed on the bundle J 1  (J'-'(E)), which will be the space of definition of 
Hamiltonians. Also, using the fact that J ' (E)  may be injected into J1(Jr- ' (E)) ,  a 
Hamiltonian formalism will be developed such that the solutions of its corresponding 
Hamilton equations for suitably defined generalised momenta will coincide with those 
of the Lagrangian case for higher-order derivatives. 
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The paper is organised as follows. In § 2 the problem of defining a higher-order 
formalism is defined, and its structure analysed. Section 3 is devoted to obtaining such a 
formalism explicitly. Finally, in § 4 the symmetries of the Hamiltonian action are 
considered and the associated Noether currents given, showing explicitly the 
equivalence of the results obtained with those which would have been obtained for the 
Lagrangian formalism. The paper as a whole will be concerned with field theory, 
although analytical mechanics may be treated along similar lines. 

2. The structure of the Hamiltonian formalism for field theory 

A truly Hamiltonian formalism derived from a regular Lagrangian should fulfil two 
conditions. Firstly, the space of definition of the Hamiltonian density should be 
parametrised by a system of m . n + n + m independent coordinates, composed of n 
field coordinates (coordinates of type q ) ,  m . n momenta (coordinates of type p )  and m 
'space-time' parameters (coordinates of type t ;  for Minkowski fields, m = 4). Secondly, 
the trajectories of the system described by the Hamiltonian formalism should be 
obtained from the modified Hamilton variational principle (in which the coordinates of 
type q and p are varied independently, and which leads to first-order Hamilton 
equations) and should be in one-to-one correspondence with the critical sections 
derived from the Lagrangian and the ordinary Hamilton principle. 

These two requisites are clearly satisfied in the most simple case-the Hamiltonian 
formalism associated with a regular Lagrangian depending on first-order derivatives of 
the fields. In this case, the Lagrangian 2" is defined as a real function on the bundle of 
the l-jets of E, (J ' (E) ,  M,  T ' ) ,  where E = M @  V, M is the base (usually the Minkowski 
space) and V is the fibre (which in field theory includes the spin variables of the field). 
J 1 ( E )  is parametrised by the coordinates (x ' * ,  y e ;  gP,), and the physical fields are cross 
sections of E. The scalar Hamiltonian density Yt is obtained from the regular 
Lagrangian 2 through the Legendre transformation DL, and the space of definition of 
x turns out to be (Aldaya and de Azcarraga 1978) J'*(E)-the dual space of the fibre 
bundle J ' (E)  -+ E-which is parametrised by the coordinates ( x ~ ,  y e  ; T: ) .  Since 2 is 
regular (i.e. det(a2'/ag>agpv) # O),  the spaces of critical sections %%, made up of the 
solutions of the second-order Euler-Lagrange equations, and % &, composed of the 
solutions of the first-order Hamilton equations 

are equivalent. 
To generalise the above formalisms to higher order in the derivatives of the fields, 

higher-order jets are required. We have two different ways of extending the space of 
definition of first-order Lagrangians J1(E)  = J ' ( J o ( E ) )  ( Jo (E) ,  the space of the zero- 
order jets of E, is again E ) .  These correspond to the spaces J ' (E)  (of r- jets of E )  and 
J'(Jr- ' (E))  (of l-jets of Jr- ' (E)) ,  the first of which may be considered'as a subspace of 
the second (Aldaya and de Azcarraga 1978; Rodrigues 1977). Of these two spaces, 
only J ' (J ' - ' (E) )  admits a dual, J '*(J ' - ' (E)) ,  suitable for formulating a Hamiltonian 
theory in accordance with the conditions mentioned above. We shall show that in 
J'*(J'- '(E)),  the momenta may be canonically defined, and that there is one momen- 
tum corresponding to each derivative of a field variable. 
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Nevertheless, we wish to construct a higher-order Hamiltonian theory equivalent to 
the Lagrangian theory, which, when the Lagrangian includes derivatives up to order r, is 
developed on J ' (E)  and not on J1(Jr- ' (E)) .  This may be accomplished from the fact 
that J ' ( E )  is a subspace of J1(Jr- ' (E)) .  In this way, given a Lagrangian 2'r onJ ' (E) ,  it is 
possible to associate with it a Lagrangian YIsr-' on J'(J'-'(E)) such that the space of 
critical sections Qpl.r- l  is the same as Qur, and then construct on J '*(J ' - ' (E))  the 
associated Hamiltonian theory. 

We remark that the construction of the formalism on J1(J'- ' (E))  may be considered 
as a generalisation of what is done in analytical mechanics. There (Godbillon 1969), 
the decomposition of a second-order equation (the Lagrange equation) into two first- 
order (Hamilton) equations is achieved by imposing on the vector field on T ( M )  (the 
phase space with natural coordinates q ', 4 '), which describes the trajectories, the con- 
dition of being simultaneously a cross section of the tangent bundle 7 ( T ( M ) ) =  
{ T ( T ( M ) ) ,  7 ~ ~ ( ~ ) ,  T ( M ) }  and of T(T(M)) = { T ( T ( M ) ) ,  T;, T(M)} ,  the tangent bundle 
of T ( M ) .  The projections 7 ~ ~ ( ~ )  and 7 ~ ;  which define the two bundles are, in local 
coordinates, 

Thus the constraint imposed on the field X -X'(a/aq')+ Y'(a/aq') is given by 

X' = dq'(X) = 4 ' ,  (2.2) 

which, for the corresponding trajectories characterised by the vector fields tangent to 
them ( X '  = dq'/dt, Y' =dq ' (X)  = dq'/dt), gives the condition 

q '  = dq'/dt. (2.3) 
This shows that a formalism leading to first-order equations (the modified Hamilton 
variational one on T ( T ( M ) ) )  may be equivalent to another one leading to second-order 
equations, provided that a constraint is introduced on the trajectories. We shall apply a 
similar procedure in the field theory case to reduce the formalism on J'(Jr- ' (E))  to that 
on J'(E).  Since such a constraint (dq' = 4' in analytical mechanics) cannot be used 
directly in the Hamiltonian formalism, this shows that any attempt to obtain a set of 
first-order Hamilton equations from a formalism on J ' ( E )  (the space of definition of 
Lagrangians depending on higher-order derivatives) has to be done through the 
intermediate steps of the formalisms on J' (Jr- ' (E))  and J '*(J ' - ' (E)) .  This we shall 
perform explicitly in the next section. 

3. Higher-order covariant Hamiltonian formalism 

The starting point is a Lagrangian 2'' given as a real function on J r ( E ) ,  space which is 
parametrised by the coordinate system ( x & ,  y a ,  y",, . . . , y ~ l . . , F , ) .  Thus 2" is a function 
of the form 

3' = T r ( x & ,  y m ,  Y E l ,  * * - ,  Y;l. . .&,).  (3.1) 

The ordinary Hamilton variational principle leads to the Euler-Lagrange equations 
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where the restriction is to cross sections qr which are r-jet prolongations qr, i.e. for 

A Lagrangian 213r-1 on J 1 ( J r - l ( E ) )  is a real function (Aldaya and de Azcirraga 

(3.3) 

- which Y - avy; l . . . , s .  

1978) 
U 0 1  

P r - l  = 21,r-1ixfi, y , y w l ,  * . , Y;l. . .*,-l;  g:@, * * 9 9 g;l..., ,-I, ,) 

of the coordinates of J1(Jr- ' (E) ) .  (In the familiar notation of analytical mechanics, the 
y ' s  correspond to the q's ,  and the g's to the 4's . )  The ordinary Hamilton principle leads 
to the equations 

(3.4) 

where the 1-jet prolongation condition is fulfilled, i.e. g ~ l , , , F s , ,  - - a , y ~ l . . . w , .  When 
the Lagrangians 2r[213r-1] satisfy the corresponding regularity conditions (Aldaya 
and de Azcirraga 1978), the modified variational Hamilton principle, where all 
y ~ l . . . , L n [ y ~ l . . , , L s ,  g",,.,,,,,] vary independently, leads again to the same equations (3.2) 
[i3.4)1. P 

Let P now be the projection J 1 ( J r - ' ( E ) )  +J'(E)  defined by the equations 

x&(p(qyl.r-l)) = x F ( q y l , r - l  1, 
yyp(q l . r - l ) )  = Y y p l ? r - l  1, 

(3.5) 

Y ~l...,,~l,(P(qyl,r-l)) = g;l . . . ,  ,-I. ,(T19r-1), 
where 91,r-1 is a point of J 1 ( J r - l ( E ) )  and P(Y13r-1) its projection on J ' (E) .  The dual 
application P" allows us to inject functions on J r ( E )  into functions on J 1 ( J r - ' ( E ) ) ,  and 
in this way to define the Lagrangian 2'19r-1 associated with 2' by 

(3.6) 2 i l , r - 1  = - P * Y ,  

- m x " ,  Y 9 Y ,I' . . * 9 Y ,1...,,-1 ; g:,, . * * 9 g;l...,,-l,,) 

which is thus a function of the form 

(3.7) 

where, as usual, the A indicates the missing arguments. We may now apply equations 
(3.4) to 2r by using (3.7) instead and incorporating the constraints induced by (3.5). 
This may be done by means of the Lagrange multipliers 

2 1 , r - 1  - Q *a * a  

(3.8) 

and, as a result, (3.2) is recovered. For instance, for r = 2 

-A:(Y;-g:,) (3.9) 2 1 , r - 1  = 2 t l . r - 1  

and (3.4) gives on cross sections (after using the constraint, &%"13r-1/dgz,u = a 2 ' / a y Z u ,  
etc) 

(3.10) 
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which, after eliminating A ,  reproduce (3.2) for r = 2 .  In the general case (3.2) is 
obtained with 

s = O , l ,  . . . ,  ( r - l ) ,  (3.11.) 
axr - d“ r - s  

A = c (-)- 
m = l  dx”’ . * dxYm a ~ z ~ . . . w ~ p u ~ . . . v , , , ’  

which gives A:1”./”r-1/” = 0 (xr Z ~ r ( ~ ~ l , . . ~ , ~ l ~ u l . . . u , ) ,  m = 1, . . .); A, = - a s / a y “ .  
We are now in a position to develop the Hamiltonian formalism. Irrespective of the 

origin of 2?-’, it is possible to obtain a Hamiltonian which will lead to the same set of 
solutions if the regularity condition is fulfilled, since in this case the Legendre trans- 
formation DL is a diffeomorphism between J1(Jr-’(E)) and J1*(Jr-’(E)).  A Hamil- 
tonian %‘lsr-l on J1*(Jr-’(E))  is a real scalar function of the form 

x1,r-1 = %‘,‘-‘(x/”, y Q ,  Y E l ,  * , * , y;l.,,/”,-l ; xf, * . * , x:l-+-lsw 1. 
In our case Elyr-’ is determined by DL from 

(3.12) 

in the usual way, 
- x13r-1, 

x1,r-l = x f g p w  +. . . + x ~ l - / ” r - l ~ / ”  g / ” l . . . / ” r - 1 7 / ”  a (3.13) 

since, with DL(V1*r-l) = 91*sr-1 E J1*(Jr-’(E)) ,  we have 
x ~ ( q , , l * ~ r - l )  = X / ” ( q l . r - - l  ), Y El.../”s(ql**r-l) = Y El.../”s(ql*r-l), 

axl,r-l 

x~l . . .~ , . / ”  ( , p l * , r - 1  ) = ol ( q l v r - l ) ,  s = O ,  1 , . . . ,  ( r - 1 ) .  (3.14) 

This allows us to construct a canonical Hamiltonian formalism. The modified 
ag /” 1. .. /”Sl/” 

Hamilton principle leads, from the variation of the Hamilton functional 

(MI )=I v l * , r - l  @1*,r-19 

I ! * ( q l * , r - l  

where the PoincarC-Cartan form is given by 

(3.15) 

(3.16) 

and 6, = i,,u (w  is the volume element on M ) ,  to the first-order Hamilton equations 

in the canonical variables I T E ~ , , . / ” * ~ / ”  and  YE^,..^^. It is clear that equations (3.17) 
reproduce (3.4). 

We may now turn to our Lagrangian (3.8) in order to obtain the higher-order 
Hamiltonian formalism. Direct application of the definition (3.13) for the conjugate 
momenta gives on q 1 * y r - ’  

/ag;l.../”,,w) + A  Ei” .wsF - - ( ~ ~ r / ~ y ~ l , . , p s ~ )  + A  E1’.’/”s/” wI . . .ws+  = ( a x ! l , r - l  
7, 

s = O ,  1 , . . . ,  ( r - 1 ) .  (3.18) r--s d“ axr 
m=O dx’’ . . dxYm a ~ ~ l . . . ~ , ~ v ~ . . . u , , , ’  

= c (-)” 

The T:’.../”~,/” we have just obtained are De Donder’s generalised momenta for the 
covariant canonical equations (3.17) (De Donder 1935; MuSicki 1978a); here they 
appear as the momenta associated with the Lagrangian (3.8). Substituting (3.12) into 
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(3.17) we find on cross sections 

(3.19) 

(i.e. the jet prolongation condition), and 

which reproduces (3.2) since, in writing (3.20), we have used the definition A a =  
- a21 ay a. 

4. Noether currefits 

One of the advantages of having obtained the Hamilton equations associated with a 
Lagrangian 2zr depending on derivatives up to order r through the modified Hamilton 
principle is that we may now proceed to formulate the Noether theorem in a precise 
way. 

The PoincarC form (3.16) is canonically defined on J1*(Jr- ' (E))  independent of the 
fact that the 7 ~ ' s  are given through their values on the images of the points of J1(Jr- ' (E))  
by DL or directly on J'*(J'-'(E)). Let us now turn to consider the invariance of the 
Hamiltonian action under a symmetry transformation. A vector field X 
J'*(J ' - ' (E))  is given by the general expression 

l * , r - l  on 

X 1 * , r - l  a a a 
=X,",.+X".+. . ,+x;l,,,p,-l a 

ax a y  a y  lLl.. .l*.,-I 

leaves the PoincarC-Cartan form invariant, i.e. If X1*,r-l 

Lx1..,-'@1*J-~ ~ v l * , r - l  = 0 (4.2) 

for any section (whether critical or not) q'*9r-1 E (J1*(Jr- ' (E))) ,  then 

on any critical section. The formula (4.3) establishes the Noether theorem and leads to 
the conserved current 
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Thus the conserved current for the Hamiltonian formalism is given by 

Using (3.13), (3.14) and (3.18) the current (4.6) may also be written in the form 

which may be shown to be the current which is obtained from Zr (or Z1*r-l) for the same 
symmetry operation, This completes the proof of the equivalence of the variational 
formalisms constructed on Z1*r-l and X1*3r-1 , and, through the connection between 3‘ 
and @-’, exhibits the relation between the Hamiltonian and the Lagrangian general- 
ised formalisms for higher-order derivatives. 
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