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Higher-order Hamiltonian formalism in field theory

V Aldaya and J A de Azcarraga

Depto de Fisica Tedrica, Facuitad de Ciencias Fisicas, Universidad de Valencia, Spain*t
Received 4 October 1979

Abstract. A Hamiltonian formalism is developed from a regular Lagrangian ¥ depending
on an arbitrary number of derivatives. The formalism leads to a set of Hamilton equations
whose solutions are the same as those of the Euler-Lagrange equations derived from &".
The Noether currents associated with a symmetry transformation of the Hamiltonian action
are also derived.

1. Introduction

It is a well known fact that the generalisation of the ordinary Hamilton variational
principle to Lagrangians depending on derivatives of arbitrary order r offers no special
difficulty: the Euler-Lagrange equations are obtained in the usual way once the action
of the vector fields is defined on the higher-order derivatives which constitute the
arguments of the Lagrangian function. When—as we shall do in the present paper—the
fibre bundle approach is used, this is accomplished by means of the r-jet prolongation
X7 of the vector field X, which acts on the coordinates of the bundle J'(E)—the bundle
of the r-jets—on which the Lagrangian function is defined (Aldaya and de Azcarraga
1978).

The situation is rather confusing, however, when one tries to obtain a canonical
Hamiltonian formalism from a Lagrangian depending on derivatives up to order r,
which, through the corresponding modified Hamilton principle, should lead to first-
order Hamilton equations equivalent to the Euler-Lagrange ones which in turn would
be obtained by applying the ordinary variational principle to that Lagrangian. The
initial difficulty is the definition of the Hamiltonian itself. The problem of finding a
Hamiltonian formalism for higher-order derivatives has already been considered in
analytical mechanics (Borneas 1959, 1969; Koestler and Smith 1965; Kriiger and
Callebant 1968; Rodrigues and Rodrigues 1970; Musicki 1978b) and field theory
(Borneas 1969; Coelho de Souza and Rodrigues 1969; Rodrigues 1977, these papers
contain further references), but not always with the same result. This situation has led
us to consider the problem of looking for a canonical Hamiltonian formalism for
higher-order derivatives. As a result, it will be shown that such a formalism may be
constructed on the bundle J 1*(J' "“I(E)), which will be the space of definition of
Hamiltonians. Also, using the fact that J'(E) may be injected into J'(J'"Y(E)), a
Hamiltonian formalism will be developed such that the solutions of its corresponding
Hamilton equations for suitably defined generalised momenta will coincide with those
of the Lagrangian case for higher-order derivatives.
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The paper is organised as follows. In § 2 the problem of defining a higher-order
formalism is defined, and its structure analysed. Section 3 is devoted to obtainingsuch a
formalism explicitly. Finally, in § 4 the symmetries of the Hamiltonian action are
considered and the associated Noether currents given, showing explicitly the
equivalence of the results obtained with those which would have been obtained for the
Lagrangian formalism. The paper as a whole will be concerned with field theory,
although analytical mechanics may be treated along similar lines.

2. The structure of the Hamiltonian formalism for field theory

A truly Hamiltonian formalism derived from a regular Lagrangian should fulfil two
conditions. Firstly, the space of definition of the Hamiltonian density should be
parametrised by a system of m.n +n +m independent coordinates, composed of n
field coordinates {coordinates of type q), m . n momenta (coordinates of type p) and m
‘space~time’ parameters (coordinates of type 7; for Minkowski fields, m = 4). Secondly,
the trajectories of the system described by the Hamiltonian formalism should be
obtained from the modified Hamilton variational principle (in which the coordinates of
type g and p are varied independently, and which leads to first-order Hamilton
equations) and should be in one-to-one correspondence with the critical sections
derived from the Lagrangian and the ordinary Hamilton principle.

These two requisites are clearly satisfied in the most simple case—the Hamiltonian
formalism associated with a regular Lagrangian depending on first-order derivatives of
the fields. In this case, the Lagrangian £ is defined as a real function on the bundle of
the 1-jets of E, (JYE),M, 7'),where E=M &)V, M is the base (usually the Minkowski
space) and V is the fibre (which in field theory includes the spin variables of the field).
J'(E) is parametrised by the coordinates (x*, y*; g5.), and the physical fields are cross
sections of E. The scalar Hamiltonian density # is obtained from the regular
Lagrangian % through the Legendre transformation Dy, and the space of definition of
# turns out to be (Aldaya and de Azcarraga 1978) J ¥(E)—the dual space of the fibre
bundle J'(E) > E—which is parametrised by the coordinates (x*, y*; 7). Since £ is
regular (i.e. det(0.%/3g%0g"%) # 0), the spaces of critical sections %, made up of the
solutions of the second-order Euler-Lagrange equations, and %%, composed of the
solutions of the first-order Hamilton equations

aX  ay“ oK omy

’ (2.1)

amh  ax*’ ay” axt
are equivalent.

To generalise the above formalisms to higher order in the derivatives of the fields,
higher-order jets are required. We have two different ways of extending the space of
definition of first-order Lagrangians J'(E)=J'(J°%(E)) (J°(E), the space of the zero-
order jets of E, is again E). These correspond to the spaces J'(E) (of r-jets of E) and
JHITHE)) (of 1-jets of JY(E)), the first of which may be considered’as a subspace of
the second (Aldaya and de Azcdrraga 1978; Rodrigues 1977). Of these two spaces,
only J'(J""Y(E)) admits a dual, J'"(J""X(E)), suitable for formulating a Hamiltonian
theory in accordance with the conditions mentioned above., We shall show that in
Jl*(J'"l(E)), the momenta may be canonically defined, and that there is one momen-
tum corresponding to each derivative of a field variable.
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Nevertheless, we wish to construct a higher-order Hamiltonian theory equivalent to
the Lagrangian theory, which, when the Lagrangian includes derivatives up to order r, is
developed on J'(E) and not on J'(J""'(E)). This may be accomplished from the fact
thatJ"(E) is a subspace of J YWIYE)). In thlS way, glven a Lagranglan F onJ'(E),itis
possible to associate with it a Lagrangian P JHTYE)) such that the space of
critical sections U1~ is the same as WUgr, and then construct on J! (J ""YE)) the
associated Hamiltonian theory.

We remark that the construction of the formalism on J'(J" " }(E)) may be considered
as a generalisation of what is done in analytical mechanics. There (Godbillon 1969),
the decomposition of a second-order equation (the Lagrange equation) intc two first-
order (Hamilton) equations is achieved by imposing on the vector field on T (M) (the
phase space with natural coordinates g', ¢'), which describes the trajectories, the con-
dition of being simultaneously a cross section of the tangent bundle 7(T(M))=
(T(T(M)), mron, T(M)} and of 7(r(M)) ={T(T(M)), mrs, T(M)}, the tangent bundle
of 7(M). The projections 7rus, and 74 which define the two bundles are, in local
coordinates,

M) {CI q}
g dq’).

Thus the constraint imposed on the field X = X' (8/dq")+ Y'(8/34") is given by
X'=dq'(X)=4, (2.2)

{4’ d' dq’, dg'y<_

which, for the corresponding trajectories characterised by the vector fields tangent to
them (X'=dq'/dt, Y =dq'(X)=dq'/dt), gives the condition

¢' =dq'/ds. 2.3)

This shows that a formalism leading to first-order equations (the modified Hamilton
variational one on 7(T(M))) may be equivalent to another one leading to second-order
equations, provided that a constraint is introduced on the trajectories. We shall apply a
similar procedure in the field theory case to reduce the formalism on J'(J"~'(E)) to that
on J'(E). Since such a constraint (dg’' =4’ in analytical mechanics) cannot be used
directly in the Hamiltonian formalism, this shows that any attempt to obtain a set of
first-order Hamilton equations from a formalism on J'(E) (the space of definition of
Lagrangians depending on higher-order derlvatlves) has to be done through the
intermediate steps of the formalisms on J'(J" }(E)) and J' ( J""YE)). This we shall
perform explicitly in the next section.

3. Higher-order covariant Hamiltonian formalism

The starting point is a Lagrangian £" given as a real function on J'(E), space which is

parametrised by the coordinate system (x“, y*, ya,, ..., V5....,). Thus £’ is a function
of the form
F = Y Ve s Yerm) (3.1)
The ordinary Hamilton variational principle leads to the Euler-Lagrange equations
4 s d’ 0"
2 =) =0, (3.2)

“ K a 3
0 dx oL, dx ay,“...u, o

s



2548 V Aldaya and J A de Azcdrraga

where the restriction is to cross sections ¥ which are r-jet prolongations ¥, i.e. for
which y&,. . = GVYill..‘uf- _

A Lagrangian "7 on J (J7 '(E)) is a real function (Aldaya and de Azcarraga
1978)

LT =T Y Vi s Vi B+ Bettrrs) (3.3)

of the coordinates of J*(J""*(E)). (In the familiar notation of analytical mechanics, the
y’s correspond to the g’s, and the g’s to the ¢’s.) The ordinary Hamilton principle leads
to the equations
agl,r—l d / agl.r'—l
a - u\ a ) = 0’
Varmws dx5\0801

s=0,1,...,(r-1), (3.4)

where the 1-jet prolongation condition is fulfilled, i.e. gg,. now =0uYeuy. u,. When
the Lagrangians £'[.#£"" '] satisfy the corresponding regularity conditions (Aldaya
and de Azcarraga 1978), the modified variational Hamilton principle, where all
Voo LY merier 8 mromeie ] Vary independently, leads again to the same equations (3.2)

[(3.4)].
Let P now be the projection J'(J''(E)) —P>J'(E) defined by the equations

XH(PEENTH) = x (P,
yEPE@ T =y (¥,
Ya(P(EM ) =gl (¥, (3.5)

Yo POV = g0 (U7,

where ¥ 'isa point of JYHJITYE)) and P(¥"" 1) its projection on J'(E). The dual
application P* allows us to inject functions on J'(E) into functions on JHITTYE)), and
in this way to define the Lagrangian &' ! associated with #" by

P =Py, (3.6)
which is thus a function of the form
LZAEEES JCLA RS DI SIS S RO S 3.7)

where, as usual, the ” indicates the missing arguments. We may now apply equations
(3.4) to £ by using (3.7) instead and incorporating the constraints induced by (3.5).
This may be done by means of the Lagrange multipliers

r—1
- ZO)‘Zlmus(yzpn#s_gz1»..ns—1,us)’ (38)

§=

<>%1,r~1 - g;l,r—l

and, as a result, (3.2) is recovered. For instance, for r=2
ST =g A (yE - 8%) (3.9)

and (3.4) gives on cross sections (after using the constraint, 0.~ /ag% , = a&fz/ay;’:y,
etc)

d /o> 3F*  d [aF?
e e RO e PO R 240
114 [
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which, after eliminating A, reproduce (3.2) for »=2. In the general case (3.2) is
obtained with

= d" A
/\Zlmusu - Z1 (—)mde1 dx"m ay" 3 § = 09 1’ sy (r_ 1)’ (311)
m= v Ko bbsh¥ Lo ¥im

which gives A5t 1* =0 (L E L (Voy o mrspvrwn s M =1,...); Ag =—0F/3y"

We are now in a position to develop the Hamiltonian formalism. Irrespective of the
origin of £, it is possible to obtain a Hamiltonian which will lead to the same set of
solutions if the regularity condition is fulfilled, since in this case the Legendre trans-
formation Dy is a diffeomorphism between J'(J"'(E)) and JYUTYE)). A Hamil-
tonian ¥ ! on Jl*(J'_l(E)) is a real scalar function of the form

1,71 __ 1,r—1 " a @ a . S [T O TN T
4 = T X Y S Vot s Yiettret ) Ty s MRl Hr—18), (3.12)

In our case #*" ! is determined by Dy from £ in the usual way,

HYT = g L btk =TT (3.13)
since, with DL (U ) =¥ "1 7V (77 Y(E)), we have
X =M,y W (T =y (T,
. gl,r—l
i = 22y 201, (- 1), (3.14)
d [T e

This allows us to construct a carnornical Hamiltonian formalism. The modified
Hamilton principle leads, from the variation of the Hamilton functional

II*(\III*,I’—I) =J- @1*,}‘—1’ (3.15)
\I,l",r—l(M)
where the Poincaré-Cartan form is given by
r—1
O =Y (et dyl L)X 0, — K w (3.16)
s=0
and 6, =i;.0 (w is the volume element on M), to the first-order Hamilton equations
a%l,r—l 8 @ a%l,r-—l a By kg b
= bt SR s=0,1,...,r=1)  (3.17)
da it ax Y eyt ax

in the canonical variables wh'"*** and yg, .. It is clear that equations (3.17)
reproduce (3.4).

We may now turn to our Lagrangian (3.8) in order to obtain the higher-order
Hamiltonian formalism. Direct application of the definition (3.13) for the conjugate
momenta gives on ¥!""?

77_:1...;&5,# — (agrl,r—l/agilmus'“)+/\;u:.1...ll-sﬁ'- = (agr/ayzlmusu) +A51...usu

r—s dm ax,
= - ’ =O,1’---, —1. ,1
mz=o ( ) dx & e dx o aYZI...H-sMVL.‘Vm s (r ) (3 8)

The 75t " we have just obtained are De Donder’s generalised momenta for the
covariant canonical equations (3.17) (De Donder 1935; Musicki 1978a); here they
appear as the momenta associated with the Lagrangian (3.8). Substituting (3.12) into



2550 V Aldaya and J A de Azcdrraga
(3.17) we find on cross sections -

gzl“.y.s.u =auyz1.-~us (319)

(i.e. the jet prolongation condition), and

—A s =

d( dF’

dx* BYﬁ1...u,u

+)\51--'“s*‘), s=0,1,....(r=1), (3.20)

which reproduces (3.2) since, in writing (3.20), we have used the definition A, =
~0F/ay“.

4. Noether currents

One of the advantages of having obtained the Hamilton equations associated with a
Lagrangian ¥" depending on derivatives up to order r through the modified Hamilton
principle is that we may now proceed to formulate the Noether theorem in a precise
way.

The Poincaré form (3.16) is canonically defined on J 1*(J "“}(E)) independent of the
fact that the ’s are given through their values on the images of the points of J YW YE))
by Dy or directly on J 1*(J "“Y(E)). Let us now turn to consider the invariance of the
Hamiltonian action under a symmetry transformation. A vector field X =1 on
JY(J"YE)) is given by the general expression
—6—+X“i+. X
ox* “

3y Hloobr—

9
0V b
3

a
e Mok, 1ot
+X a”:ﬁ. LHXE pyr el

Xl*,r-l — Xp.

4.1)

If X""~! Jeaves the Poincaré~Cartan form invariant, i.e.

Ly=r-10" g1 =0 (4.2)
for any section (whether critical or not) Pl e (JU(ITTYE))), then

d(ixrr-1@ g1 =0 (4.3)

on any critical section. The formula (4.3) establishes the Noether theorem and leads to
the conserved current
1% 1 r—1
i@ = B (X B T Y, X ixe1,)
s=0

- %X, (4.4)
which on cross sections gives
: 1*,r—1 £ (IO TN TR ST [TPETIN o v v xra
ixim® N 20 (o™ XopgowOu = a0y 0y 0 (X0, — 8K )]
=

-TIX, (4.5)
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Thus the conserved current for the Hamiltonian formalism is given by
r=1 r=l
e Y e (xe —ayyil...u,X”)Jr( I T "'1>X“. 4.6)
s=0 s=0

Using (3.13), (3.14) and (3.18) the current (4.6) may also be written in the form
0"

[24
d i fhshh

r—=1
JF =LK T (K = Vi X AL, 4.7

which may be shown to be the current which is obtained from #” (or & b1 for the same
symmetry operation. This completes the proof of the equivalence of the variational
formalisms constructed on £ "' and #'"" !, and, through the connection between #”
and ¥, exhibits the relation between the Hamiltonian and the Lagrangian general-
ised formalisms for higher-order derivatives.
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